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1 Introduction

The estimation of impulse response functions is central to understanding the impact of shocks on
the macroeconomy. Macroeconomists have largely relied on estimating vector auto-regressions
(VARs) and imposing the minimum number of additional identifying restrictions to interpret them
as structural. One set of identifying restrictions used with VARs are long-run restrictions, wherein
practitioners restrict the long-run impact of shocks within the model. For example, the long-
standing debate surrounding the response of hours to productivity shocks spurred by Galí (1999)
has largely relied on evidence from structural VARs (SVARs) identified by assuming that demand
shocks have no long-run effect on productivity growth.1

Long-run identification schemes such as these are not robust to two central specification choices:
assumed order of integration of the endogenous variables and included lag length. In this paper,
I propose an alternative estimator and investigate its properties. Using Monte-Carlo evidence, I
show that it is significantly more robust to the choice of lag-length and order of integration of
the endogenous variables than SVARs identified with long-run restrictions. I then provide new
evidence that, consistent with Real Business Cycle (RBC) models and in contrast to much of the
SVAR evidence, labor hours rise in response to productivity shocks.

Identification with long-run restrictions follow the work of Shapiro and Watson (1988), Blan-
chard and Quah (1989), and King et al. (1991). In this framework, a finite lag VAR is first estimated
and the sums of the implied moving average coefficients are subsequently constrained to recover
the structural parameters of the model. Cooley and Dwyer (1998) , Ravenna (2007), and Chari
et al. (2008) have raised doubts regarding the validity of this approach. Together, they show that
an inappropriate choice of lag length can severely bias impulse response functions estimated in
this way. An inappropriate lag length not only biases the estimated AR coefficients due to omitted
variables, but more importantly ignores terms in the moving average coefficients of the true data
generating process.

My proposed estimator extends the local projections studied in Jordà (2005) to achieve struc-
tural identification. Local projections regress an endogenous variable on lags of itself and other
endogenous variables independently for each forecast horizon. In this way, local projections esti-
mate the moving average coefficients of the underlying data generating process directly rather than
relying on recursive substitution as in VARs. As a result, the long-run impact of each shock may
be constructed and constrained without excluding terms in the moving average representation of
the underlying data generating process. Moreover, omitted variable bias is not passed between
moving average coefficients through recursive substitution. Because of these features, structural

1Work by Christiano et al. (2003), Christiano et al. (2004), Francis and Ramey (2005), Galí and Rabanal (2005),
Fernald (2007), Canova et al. (2010), and Saijo (2019) have all used variants of this approach to show that hours may
fall on impact in response to positive productivity shocks.
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identification using the proposed estimator should be expected to outperform SVARs of similar
lag length regardless of the order of integration of the endogenous variables. To the best of my
knowledge, I am the first to implement and study the properties of local projections with long-run
restrictions.

To test my previous claim, I rely on a two-shock RBC model developed in Chari et al. (2007)
and Chari et al. (2008) (hereafter CKM) as the data generating process. This model has several
advantages. Its linearized form not only has a VAR(∞) representation for a wide range of parameter
values, but its structural parameters can be identifiedwith long-run restrictions. Moreover, the CKM
model has been used to evaluate many empirical models, including SVARs, in McGrattan (2010),
Kascha and Mertens (2009), and CKM. For each simulated data series, I estimate the impulse
response function of labor hours to a productivity shock using the standard SVAR estimator and the
proposed estimator. I find that the proposed estimator yields significant bias reductions relative to
the SVAR both in estimating the full impulse response function and the contemporaneous response.
For example, the proposed estimator reduces the bias of the contemporaneous response by 73%
and 47% when labor hours are included in first differences and levels, respectively. My proposed
estimator correctly estimates the direction of the contemporaneous response and the shape of the
impulse response function in all cases, and can eliminate all of the biases for some specification
choices.

I then isolate the small sample bias of the proposed estimator from other specification choices
by increasing the length of each simulated data series. Similar to the findings of Erceg et al.
(2005) in the context of SVARs, I find that the effect of small sample sizes on the structural
parameter estimates depends on the empirical specification used.2 Because the estimated AR
suffer from the well known small sample bias first described in Hurwicz (1950), their sum and
therefore the estimated structural parameters are also biased in small samples. The bias in the
structural parameters, however, results from a non-linear transformation of that in the reduced form
coefficients. As a result, the structural estimates may be biased upward even when the reduced form
estimates are biased downward. This issue is particularly important at long forecast horizons, but
quantitatively small at short forecast horizons. Despite these sensitivities, the proposed estimator
outperforms the SVAR in terms of impact error and integrated bias across all forecast horizons
considered.

Having established the advantages of my proposed estimator, I show that it has first order impli-
cations for existing empirical discussions that rely on SVARs identified with long-run restrictions
by revisiting the debate on the response of hours to productivity shocks.3 The overwhelming

2Faust and Leeper (1997) make a related point when constructing confidence bands and hypothesis testing after
imposing long-run restrictions on estimated VARs.

3Notable exceptions in this literature are Basu et al. (2006) and Sims (2011), who do not rely exclusively on SVARs
identified with long-run restrictions. They, however, come to differing conclusions.
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conclusion of this literature has been that labor hours fall in response to productivity shocks, a
result that is at odds with RBC models à la Kydland and Prescott (1982) and King and Rebelo
(1999). Using data from the Bureau of Labor Statistics (BLS) on non-farm private business labor
productivity and labor hours spanning 1948Q1 to 2019Q2, my proposed estimator indicates that
labor hours rise in response to a productivity shock and subsequently follow a hump shaped profile.
In contrast to Christiano et al. (2003) and Christiano et al. (2004) who come to a similar conclusion,
my results are robust to whether or not labor hours are first differenced and the inclusion of regime
switches in labor productivity growth.4 Moreover, my results provide new evidence in support of
the standard RBC model.

My findings also contribute to the growing literature assessing the ability of local projections
to improve estimates of impulse response functions. Kilian and Kim (2011), for example, use data
simulated from a VAR(12) to compare the coverage rates of impulse response functions estimated
using local projections andVARs. They argue that the local projectionsmethod provides no apparent
advantages. Brugnolini (2018) shows that their use of the Akaike (1974) information criterion in
choosing the lag length rather than the Schwarz (1978) information criterion drives their results.5
Both papers apply structural shocks estimated using a VAR with short-run restrictions to the local
projections method. Choi and Chudik (2019) instead tests the local projections against several
alternative estimation procedures when the sequence of structural shocks is perfectly observed
rather than estimated. Recent work by Plagborg-Møller and Wolf (2019) proves that impulse
response functions estimated from local projections and VARs are asymptotically equivalent and
suggest that any identification schemes relying on local projections succeed if and only if SVARs
succeed. I show that structural identification through my proposed estimator and the previously
described SVAR approach can differ wildly in empirically relevant sample sizes.

The rest of the paper is organized as follows. Section 2 reviews long-run restrictions in the
context of VARs to illustrate the crucial source of bias and describes the proposed alternative.
Section 3 details both the assumed data generating process and the Monte-Carlo approach used
to test my claims of the proposed estimator. Section 4 describes the results of the Monte-Carlo
exercise. Section 5 uses the proposed estimator to study the response of aggregate hours to a
productivity shock. Section 6 summarizes my findings.

4Garín et al. (2019) finds that hours decline on impact away from the zero lower bound, but rise when the zero
lower bound is binding.

5The AIC prefers over-parameterized models. Brugnolini (2018) argue that the exercise presented in Kilian and
Kim (2011) effectively asks the local projections method to outperform the true data generating process, which is not
possible and therefore provides an inappropriate comparison between local projections and VARs.
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2 Long-Run Restrictions

In this section, I begin by presenting a simple structural VAR, highlighting the need to impose
additional identifying restrictions. I then review how to recover the structural shocks by imposing
long-run restrictions to an estimated VAR and describe why this method is so sensitive to the
omission of relevant lags. Finally, I present my proposed alternative estimator that imposes long-
run restrictions using local projections. I focus on the simplest casewith only a single lag throughout
to simplify notation and facilitate exposition. The discussion below can be generalized to the case
of an arbitrary number of lags.

2.1 The Problem with SVARs

The goal of imposing sufficiently many identifying restrictions to an estimated VAR is to or-
thogonalize the forecast errors, thereby recovering the sequence of structural shocks. Given that
the reduced form parameters have been estimated, recovering the contemporaneous correlation
matrix of the endogenous variables is sufficient to accomplish this goal. Estimating this matrix
through long-run restrictions requires imposing assumptions on the estimated long-run impact of
the structural shocks and subsequently inverting the reduced form parameters.

Consider, for example an n-variable structural VAR(1) given by

Bxt = Γ0 + Γ1xt−1 + εt (1)

where B is the contemporaneous correlation matrix and subsumes that variance of εt . B cap-
tures both the indirect effect of εi,t on xi,t through the other endogenous variables as well as the
contemporaneous effect of ε−i,t on xi,t . In this way, the contemporaneous correlation matrix, B,
orthogonalizes the shocks that drive the stochastic process, εt , so that they may be interpreted as
structural (causal) shocks with E(εtε

′
t) = I, where I is the identity matrix. Because each endoge-

nous variable is potentially a function of not only lagged variables, but also the contemporaneous
values of each other endogenous variable, rearranging Eq. 1 and simply applying OLS methods
will yield biased coefficients.

Instead, one must first estimate the reduced form of the structural VAR by inverting B and
impose additional identifying restrictions to recover the contemporaneous correlation matrix. The
reduced form VAR implied by Eq. 1 is given by

xt = B−1
Γ0︸︷︷︸

A0

+ B−1
Γ1︸︷︷︸

A1

xt−1 + B−1εt︸︷︷︸
et

(2)

where A0 and A1 are transformations of the structural parameters and et are forecast errors such that
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E(ete′t) = Ω is no longer the identity matrix. Because E(xt−1εt) = E(xt−1et) = 0, the parameters
of Eq. 2 may be consistently estimated using OLS. Including the covariance matrix of et , this
yields only n + n2 + n2+n

2 parameter estimates while the structural VAR is characterized by n + 2n2

parameters.6 Thus, n2−n
2 restrictions on the long run impact of the structural shocksmust be imposed

to recover estimates of the structural parameters.
To obtain the long-run impact of a unit impulse of the structural shocks to the endogenous

variables, it is instructive to re-write Eq. 2 in its moving average form. In particular, recursive
substitution and the definition of et yields

xt = B−1εt + A1B−1εt−1 + A2
1B−1εt−2 + . . . (3)

Thus, the time t impact of a structural shock i periods prior is Ai
1B−1εt−i. Moreover, the long-

run impact of shocks, D, is simply the sum of each of time t impact of those same shocks, i.e.
D =

∞∑
i=0

Ai
1B−1. Further assuming that the eigenvalues of A1 are less than 1 in modulus, the long-run

impact matrix can then be written as

D = (I − A1)
−1B−1 (4)

where (I − A1)
−1 = I + A1 + A2

1 + . . . are the reduced form moving average coefficients. As only
A1 in Eq. 4 can be estimated from Eq. 2, an additional equation to pin down D and recover B−1 is
necessary. Given that E(εtε

′
t) = I, we have E(ete′t) = Ω = B−1B−1′ and so

DD′ = (I − A1)
−1
Ω(I − A′1)

−1 (5)

where A1 and Ω can both be estimated from the reduced form VAR. Long-run restrictions can now
be imposed on D such that Eq. 5 holds and A1 and Ω satisfy Eq. 2. Given D, B−1 is then obtained
by inverting the reduced form moving average coefficients, (I − A1)

−1.
Taking a Cholesky decomposition of Eq. 4, for example, returns a triangular matrix for D and is

equivalent to assuming that structural shocks have no long-run effect on the endogenous variables
higher in the Cholesky ordering. By replacing A1 and Ω with Â1 and Ω̂, respectively, B̂ can be
consistently estimated. Given estimates for the contemporaneous correlation matrix and reduced
form moving average (lag) coefficients, it is straightforward to obtain the estimated s-step ahead
impulse response to a structural shock of size d.

ÎR(s, d) = Âs
1 · B̂

−1 · d (6)

6Generally, an estimated VAR(p) will provide n+np+ n2+n
2 parameter estimates compared to n+n2p+n2 parameters

in the structural VAR(p).
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As is evident by Eq. 3-Eq. 5, consistently estimating the moving average coefficients of the
underlying data generating process is critical to consistently estimating B and therefore IR(s, d).
Lag length mis-specification not only results in inconsistent estimates of the lag coefficients in
Eq. 2, but more importantly in missing terms in all but the first two moving average coefficients.
Suppose, for example, that the true data generating process took the form of a VAR(2) given by
xt = A0+ A1xt−1+ A2xt−2+ et rather than the VAR(1) described above. The first two coefficients of
the moving average representation of both the true and assumed data generating process are equal
to I and A1. The third coefficient of the moving average representation on the other hand is A2

1
for a VAR(1) and A2

1 + A2 for a VAR(2). A similar discrepancy exists between the two for each
coefficient in their respective moving average representation after the third. This discrepancy poses
first order consequences when imposing long-run restrictions on a VAR with incorrect lag length.
CKM, for example, show that estimated contemporaneous responses may be more than double that
of the true response, and may be of the incorrect sign even after controlling for small sample bias.7

2.2 Identification with Local Projections

The structural VAR methodology developed in the previous section is indeed useful for capturing
the dynamics in a high-dimensional system. Estimated VARs, however, are a linear global approx-
imation for the underlying system. That is to say that the dynamics of the system are determined
recursively from one-step ahead forecasts. The local projections method provides an alternative.

The local projections method first presented in Jordà (2005) allows for a more direct and flexible
estimation of the impulse response function. Rather than relying on recursive forecasts, he instead
suggests estimating the dynamic relationships of a system at each forecast horizon independently
with a collection of regressions. The local projections form of Eq. 3 is given by

xt+s−1 = A(s)0 + A(s)1 xt−1 + ut+s−1 s = 1,2, . . . , smax (7)

where A(s)0 is an n × 1 vector of constants, A(s)1 are matrices of coefficients for the lag dependent
variable, s denotes the s-step ahead forecast, smax is the maximum forecast horizon, and ut+s is a
mean zero forecast error. The forecast error contains information of all shocks from time t to time
t + s − 1.8 Jordá denotes the collection of equations given by Eq. 7 for s = 1,2, . . . , smax as local
projections due to the fact that each coeffecient is estimated equation by equation for each forecast
horizon. As a result, these local projections are a set of local approximations to the true data

7This discussion puts aside omitted variable bias in the OLS step to better illustrate the central problem with the
standard SVAR estimator. The reduced form coefficients of an estimated VAR(1) will of course also be biased due to
the omitted second lag.

8It can be shown that the forecast errors given by ut+s−1 are a moving average of the reduced form residuals,
{et+i}s−1

i=0 , when the true data generating process is a VAR.
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generating process rather than a single global approximation as is the case with VARs. Jordà and
Kozicki (2011) prove that, for a given forecast horizon, the coefficients in Eq. 7 can be consistently
estimated by simple OLS.

Moreover, the local projections technique allows for a simple method to compute the impulse
response functions. In particular, the set of reduced form impulse responses may be orthogonalized
as in Eq. 6. The key distinction between the two is that rather than using recursive substitution
to obtain Âs

1, As
1 is estimated directly with Â(s)1 . A key question remains, however: how does one

recover B? Current approaches to estimating structural impulse response functions using local
projections simply apply a contemporaneous correlation matrix obtained elsewhere to the reduced
form coefficients. For example, Jordà (2005) accomplishes this by recovering B using an estimated
SVAR.9 This approach, however, causes the shortcomings of SVARs to be passed on to the local
projections through the inconsistent estimation of B described previously.10

Rather than obtaining B by imposing long-run restrictions on VARs, the local projections can
instead be used directly. In particular, recall that a crucial source of bias in estimating B usingVARs,
is missing terms in each moving average coefficient as a result of lag misspecification. Because the
local projections method does not rely s-steps of recursive substitution, each projection attempts
to estimate its respective moving average coefficient directly. To see this, again consider the set of
local projections given by Eq. 7 and substitute out xt−1 using the s = 1 local projection only once.

xt = A1
0 + A(1)1 A(1)1 xt−2 + A(1)1 ut−1 + ut

xt+1 = A2
0 + A(2)1 A(1)1 xt−2 + A(2)1 ut−1 + ut+1

xt+2 = A3
0 + A(3)1 A(1)1 xt−2 + A(3)1 ut−1 + ut+2

...

(8)

Noting several features of Eq. 8. First, note that the structural shocks, εt , drive the stochastic process
and that xt−2 summarizes all past shocks by assumption. Further note that ut+s−1 summarizes
information on {et+i}

s−1
i=0 . Then, the only information contained in ut−1 is that of the time t − 1

structural shocks, εt−1. Thus, A(1)1 is the t − 1 moving average coefficient, A(2)1 is the t − 2 moving
average coefficient, and so on. The time t moving average coefficient is trivially given by the
identity matrix. Given this collection of local projections, the moving average coefficients used
construct Eq. 5, Ai

1, can simply be replaced by the local projections coefficients, A(s)1 . The tern

9This is similarly done in the critiques by Kilian and Kim (2011) and Brugnolini (2018).
10If the sequence of structural shocks is known (e.g. Hamilton, 1985; Romer and Romer, 2004; Ramey, 2011), then

they may instead be included as regressors themselves.
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(I − A1)
−1 in Eq. 5 is then given by

(I − A1)
−1 =



1 +
∑
s

a(s)11
∑
s

a(s)12 . . .
∑
s

a(s)1n∑
s

a(s)21 1 +
∑
s

a(s)22 . . .
∑
s

a(s)2n

...
...

. . .
...∑

s
a(s)n1

∑
s

a(s)n2 . . . 1 +
∑
s

a(s)nn


(9)

The estimation of B then proceeds as before after substituting âi j for ai j and Ω̂ for Ω, where Ω̂
obtained from an estimated VAR and the s = 1 local projection are equivalent.11

This alternative estimator has several distinct advantages. First, any omitted variable bias in the
estimated lag coefficients from including too few lagged dependent variables is not compounded
across forecast horizons as a result of s-steps of recursive substitution. Second, and most impor-
tantly, because the local projections method provides a collection of local approximations rather
than a single global approximation as in VARs, summing across the estimated lag coefficients as
described above does not result in missing terms in the implied moving average coefficients as is
the case with improperly specified VARs. Instead, A(s)1 estimates each moving average coefficient
directly with the obvious normalization that the first, i.e. s = 0, moving average coefficient is not
estimated and is instead given by the identity matrix. This fact may not be obvious at first glance
as the proposed local projections estimator still relies on recursive substitution. The key distinction
is that the proposed local projections estimator relies only on one-step of recursive substitution.
That is, the recursive substitution used in the proposed estimator relies only on the fact that the first
moving average coefficient for a VAR of arbitrary lag length is the identity matrix. Thus, relying
on one step of recursive substitution does not reintroduce the same issues present in the standard
SVAR estimator.

It is immediately evident, that the proposed method relies on an appropriate choice of maximum
forecast horizon, smax , to construct the sums Eq. 9. It is also immediately evident that this estimator
does not simply trade one problem for another. Increasing the accuracy of impulse response
functions estimated using an n-variable VAR with long-run restrictions requires including more
lags. Each additional lag results in a degrees of freedom reduction of n. Instead, improvements
to local projections with long-run restrictions can be made by increasing the maximum forecast
horizon rather than increasing the lag length of each regression. This results in a degrees of
freedom reduction of only one. Thus, the proposed method for imposing long-run restrictions is

11Christiano et al. (2006) develop a non-parametric method to estimate Ω that may further improve my proposed
method. As shown in Section 4, however, my proposed estimator yields significant bias reductions even without relying
on the methods developed in Christiano et al. (2006).
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less limited by the length of data series available.12 I return to this issue in Section 4 where I show
that empirically relevant sample sizes allow for a sufficiently long forecast horizon to improve the
estimation of both contemporaneous responses and the subsequent path of the impulse response
function using my proposed estimator.

3 Testing the Proposed Estimator

To test the properties of the proposedmethod against that of the standard SVAR approach, I rely on a
two-shock version of a Real Business Cycle model developed in Chari et al. (2007) and CKM as the
data generating processes.13 This model has the distinct advantage that its linearized form satisfies
the invertibility conditions described in Fernández-Villaverde et al. (2007) and Lippi and Reichlin
(1994) that permit a VAR(∞) representation for a wide range of parameter values. Moreover,
Chari et al. (2007) show that including stochastic wedges into a canonical RBC model such as this
describes post-war aggregates well. This allows me to test the claim that local projections with
long-run restrictions (LRLPs) are more robust than SVARs to specification choices. I begin by
simulating the model for 285 quarters 1,000 times and estimating the impulse response of labor
to a productivity shock using both an SVAR and LRLPs for each simulated series.14 I adjust the
lag length of both the estimated LRLPs and SVAR, and the maximum forecast horizon of the local
projections method to investigate its advantages in empirically relevant samples. I then repeat this
exercise using a sample length of 10,000 quarters to investigate the effects of small sample bias for
the proposed estimator. Throughout, I focus on the response of hours to a productivity shock as
this is the statistics most used in the literature to choose between business cycle models. Moreover,
this is the statistic I estimate in Section 5 where I revisit the hours debate.

3.1 Two-Shock RBC Model

A unit mass of infinitely lived households maximize expected utility by making a consumption-
savings decision and a labor supply decision in frictionless markets, and discount the future at
rate β. Households are subject to stochastic labor taxes that are rebated lump-sum in each period.
Furthermore, I assume that household preferences are additively separable within and across

12It is well known that properly specified VARs are more efficient than their local projection counterparts and so
long-run restrictions imposed with VARs dominate asymptotically.

13I present only the key equations. Refer to Chari et al. (2007) and CKM for more details and proofs.
14The data series used in Section 5 is approximately 285 quarters in length.
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periods, and are of the CES form. The problem of the representative household is then given by,

max Et0

∞∑
t=t0
[β(1 + γ)]t [log ct + φ log(1 − lt)] s.t. ct+(1+γ)kt+1−(1−δ)kt = (1−τlt)wt lt+rt kt+Tt

(10)
where all variables are in per-capita terms. Here, δ is depreciation, γ is population growth, kt is
per-capita capital stock, wt is the wage rate, rt is the return on capital, Tt are lump sum rebates of
the stochastic labor wedge, τlt , and ct and lt are per-capita consumption and labor, respectively.

Firms produce a numeraire consumption good using a Cobb-Douglas production function with
labor augmenting technology, Zt . Firm’s maximize their profit function, (kt)

α (Zt lt)1−α−rt kt −wt lt ,
by choosing labor and capital input each period.

The stochastic variables, log Zt and τlt , are subject to independent mean zero shocks each period
given by log zt and εlt , respectively. The covariance matrix of these shocks is therefore given by[
σ2

z 0
0 σ2

l

]
. I further assume that Zt is log-normally distributed and follows a random walk with

drift, µz, in logs. τls is instead normally distributed and is defined by a stationary AR(1) process in
levels. The evolution of the stochastic variables is then characterized by

log Zt = µz + log Zt−1 + log zt (11)

τlt = (1 − ρl)µl + ρlτlt−1 + εlt (12)

where ρl is the persistence of the stochastic labor wedge and log zt and τlt are independent normally
distributed shocks. With the assumption that 0 < ρl < 1, innovations in the labor wedge are
temporary. To close the model, the aggregate resource constraint is given by ct + (1 + γ)kt+1 =

yt + (1 − δ)kt .
Log-linearizing about the steady state using standard methods, one may define a state-space

system of the model. I assume that labor productivity growth, log
(
yt
lt

)
, and the log of labor hours,

log (lt) are observable. The system is defined this way for a several reasons. If more variables
are included in the observer equation than shocks driving the process–in this case two– then a
subset of the included variables will be a linear combination of the others, precluding a valid
VAR(∞) representation of the model (Ingram et al., 1994; Ireland, 2004; Fernández-Villaverde et
al., 2007). Moreover, defining the observer equation in this way allows for a VAR(∞) representation
of the model that is consistent with the large literature estimating the aggregate response of hours
worked mentioned previously–shocks to the stochastic labor wedge have no long-run effect on
labor-productivity growth.

To make the model quantitative, I set φ = 1.6, α = 0.33, depreciation to be 6%, the rate of time
preference to be 2%, population growth to be 1%, and the technology growth rate to be 2%. All
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parameters are set to match these annualized rates such that a period in the model is equivalent to
one quarter. The parameters governing the stochastic variables are set so that (µz, µl) = (0.005,0.4),
the persistent of the stochastic labor wedge is ρl = 0.95, and the standard deviation of each shock
as (σz, σl) = (0.0114,0.00725).15

3.2 Econometric Specification

To investigate the properties of the proposed method, I estimate the model analogue of Eq. 7 given
by


∆ log

(
yt+s
lt+s

)
= a(s)0,yl

+ a(s)1,yl
∆ log

(
yt−1
lt−1

)
+ a(s)1,l log lt−1 + . . . + a(s)

p,yl
∆ log

(
yt−p
lt−p

)
+ a(s)p,l log lt−p + u(s)y

l ,t+s

log lt+s = b(s)0,l + b(s)1,yl
∆ log

(
yt−1
lt−1

)
+ b(s)1,l log lt−1 + . . . + b(s)

p,yl
∆ log

(
yt−p
lt−p

)
+ b(s)p,l log lt−p + u(s)l,t+s

(13)
for s = 0,1,2, . . . , smax . As described in Section 2, the two main advantages of imposing long-run
restrictions using local projections are that each regression is a local approximation and so bias
at any one forecast horizon is not compounded due to recursive substitution, the reduced form
coefficients estimate the MA coefficients of the underlying data generating process directly, and
that additional terms may be included in Eq. 9 by simply increasing the smax . While I use a lag
length of 4 and a maximum forecast horizon of 25 quarters as a benchmark, I adjust these two
specification choices to illustrate the robustness of this method to the choice of lag length and
investigate the sensitivity of LRLPs to the choice of smax .

Moreover, I estimate a VAR(p) with labor-productivity growth ordered first to illustrate the
advantages of local projections with long-run restrictions. The estimated model is given by[

∆ log
(
yt
lt

)
log lt

]
=

[
A11(L) A12(L)
A21(L) A22(L)

] [
∆ log yt−1

lt−1
log lt−1

]
+

[
e1t
e2t

]
(14)

where Ai j(L) are lag polynomials of order p, and e1t and e2t are reduced form forecast errors. The
length of the lag polynomial included in Eq. 14 is always consistent with that of Eq. 13.

While labor hours in the model are stationary by construction, Dickey-Fuller tests performed on
the data used in Section 5 do not reject the null hypothesis of a unit root in hours. Moreover, Francis
and Ramey (2005), Galí and Rabanal (2005), and CKM all argue that including labor in levels is
inferior to an econometric specification including first differenced labor hours.16 In light of these
considerations, I also estimate the local projections and VAR using a differenced specification by

15CKM set the standard deviation of productivity shocks by dividing the standard deviation of TFP estimated in
Prescott (1986) by labor share.

16Recent work by Saijo (2019) also uses a first differenced specification, but does not provide a clear justification of
this choice.
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replacing log lt with ∆ log lt = log lt − 0.99 · log lt−1 in Eq. 13 and Eq. 14.17

4 Monte-Carlo Results

4.1 Small Sample Results

The benchmark results wherein 1,000 time series of 285 quarters are simulated and each estimator
applied to all series are displayed below.18 Figure 1 compares the mean estimated response of
hours to a one standard deviation technology shock to the true response of the model. The results
of the econometric specifications incorporating log-labor in differences are shown in Figure 1a and
the results when including log-labor in levels are shown in Figure 1b. Throughout this section,
the results from the benchmark local projections method and SVAR are shown in dark blue and
red, respectively. The model implied response is always shown in black. Moreover, I present the
estimated impulse response function to a forecast horizon of 50 quarters in order to illustrate both
the full shape of the estimated impulse response function and how it compares across specification
choices. In cases where smax < 50, I estimate the local projections to a forecast horizon of 50 but
use only the first smax coefficients in the construction of the contemporaneous correlation matrix.
I use the remaining 50 − smax coefficients only to extend the estimated impulse response function
to a forecast horizon of 50 for graphical purposes.

Figure 1: Comparison to True Response in Small Samples

(a) Differences Specification (b) Levels Specification

On impact, the model implies a 32 basis point rise in hours worked. Relative to the mean
response estimated from the SVAR, the bias of the LRLPs is substantially reduced. In fact, the

17This avoids over differencing but is quantitatively equivalent to a first differenced specification asymptotically.
18The length of these time series are chosen to match those in Section 5.
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impact response of hours estimated using SVARs is 69 basis points lower and 30 basis points higher
than the true response for the differences and levels specification, respectively. The mean impact
response of the proposed estimator with labor included in differences and in levels is instead 19
basis points lower and 16 basis points higher than the true response, respectively. This translates
into bias reductions in the response on impact for differences and levels specification of 72% and
47%, respectively. Moreover, the proposed estimator accurately represents the shape of the true
response in both specifications whereas the shape of the impulse response function estimated using
the SVAR changes drastically with the choice of hours used.

To quantitatively characterize the performance of each method in estimating the full impulse
response function, I rely on a normalized integrated root mean squared error defined by

ρ
(
ÎR, IR, h

)
=

©­­­­­­«

h∫
0

(
ÎR(h) − IR(h)

)2
dh

h∫
0

IR(h)2dh

ª®®®®®®¬

1
2

(15)

where ÎR(h) is the estimated impulse response at horizon h, IR(h) is the true impulse response
at time h, and h is the maximum forecast horizon of interest. This metric is both robust to scale
and punishes deviations symmetrically. Figure 2 and Figure 3 shows this metric as a function
of h for the benchmark estimates of the differences and levels specification. The former shows
ρ
(
EÎR, IR, h

)
and so identifies squarely the integrated bias of each estimator. The latter instead

displays Eρ
(
ÎR, IR, h

)
and so captures the bias-variance tradeoff of each estimator.

Figure 2: Integrated Bias

(a) Labor in Differences: ρ
(
EÎR, IR, h̄

)
(b) Labor in Levels: ρ

(
EÎR, IR, h̄

)
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In both the levels and differences specification, the LRLPs outperform the SVAR method in
terms of bias. Indeed, Figure 2a and Figure 2b show that integrated bias of the LRLPs is 50% lower
than the SVARmethod in the differences specification and 39% lower in the levels specification even
after 48 quarters (12 years). Reductions in the integrated bias are even more substantial at shorter
forecast horizons. Figure 3a further shows that the proposed estimator outperforms the SVAR
method in terms of mean squared error at all horizons considered in the differences specification.
In the levels specification, the LRLPs outperform the SVAR in terms of mean squared error at
forecast horizons less than 3 years, after which the SVAR performs better. Clearly, however, this is
a result of the reduced efficiency of local projections at long forecast horizons rather than the SVAR
overtaking LRLPs in terms of bias. Moreover, the reductions in efficiency are relatively small as
Eρ is only 8% lower for the SVAR than the LRLPs even after 24 quarters (i.e. 6 years). Also notice
that the mean squared error of the SVAR estimator asymptotes whereas the same is not necessarily
true for the local projections estimator. This is a direct result of the fact that the SVAR estimator
relies on recursive substitution and the true response decays to 0 in the model. At horizons greater
than the included lag-length, the effect of the shock decays due to multiplication of the estimated
AR coefficients in the reduced form VAR. Thus, the estimated effect on hours eventually returns
to 0 regardless of bias in B̂ as in the model. Because this is not a feature of the local projections
estimator, the estimated impulse response of a shock does not necessarily decay to 0 at long forecast
horizons.

Figure 3: Integrated Mean Squared Error

(a) Labor in Differences: Eρ
(
ÎR, IR, h̄

)
(b) Labor in Levels: Eρ

(
ÎR, IR, h̄

)
Finally, to further illustrate the relative performance of the local projections estimator and the

standard SVAR estimator, Table 1 and Table 2 presents the bias and mean squared error, rather than
their integrated counterparts, at each forecast horizon. I normalize each by the value of the true
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impulse response function and the square of this value, respectively, to induce scale invariance. In
addition, I highlight in grey rows in which the LRLP estimator yields the correct qualitative result
but the SVAR does not. That is, I highlight cases when the LPBQ estimator has the correct sign but
the SVAR estimator does not. Cases in which the LRLPs do not yield improvements are indicated
with a dash. Evidently, the LRLP yields large bias reductions at virtually every forecast horizons
regardless of the specification used. Moreover, the LRLP estimator yields mean squared error
reductions at all forecast horizons considered for the first differences specification. For the levels
specification, the LRLPs yield mean-squared error improvements for throughout the first year and a
half and subsequently do not outperform the SVAR estimator. As explained above, however, this is
a result of increasing variance at long forecast horizons rather than SVARs outperforming LRLPs in
terms of bias. Still, the LRLPs yield reductions in mean squared error at forecast horizons typically
of most interest for both specification choices.

Table 1: Bias and MSE in First Differences

Bias Mean-Squared Error

Horizon LRLP SVAR % Reduction LRLP SVAR % Reduction
0 -0.185 -0.684 73.0 1.53 5.02 69.6
1 -0.191 -0.670 71.5 1.61 5.28 69.5
2 -0.197 -0.658 70.0 1.66 5.58 70.3
3 -0.203 -0.648 68.7 1.81 5.92 69.4
4 -0.205 -0.637 67.8 1.91 6.22 69.2
5 -0.209 -0.623 66.5 2.11 6.46 67.3
6 -0.214 -0.610 65.0 2.27 6.73 66.2
7 -0.217 -0.597 63.6 2.48 7.00 64.6
8 -0.219 -0.585 62.5 2.65 7.31 63.8
9 -0.219 -0.572 61.7 2.80 7.61 63.1
10 -0.222 -0.560 60.3 2.98 7.92 62.4
15 -0.232 -0.504 54.0 4.50 9.76 53.9
20 -0.244 -0.456 46.6 6.94 12.1 42.9
25 -0.261 -0.415 37.1 11.7 15.3 23.1

The improvements of the local projections method over the SVAR of course depend on the lag
length used andmaximum forecast horizon, smax , included in the estimation of the contemporaneous
response. I therefore re-estimate the impulse response function for each time series after varying
the maximum forecast horizon, smax , and lag length, p, included. Figure 4a and Figure 4b show
the results of adjusting smax in the differences and levels specifications, respectively. The results
from adjusting the included lag length are shown in Figure 5.

Several properties of the proposed estimator are immediately evident. First, the proposed
estimator is sensitive to the maximum forecast horizon, smax . This results from the fact that smax

determines where the summations in Eq. 9 are truncated and therefore the number of estimated
moving average coefficients included in the construction of B̂. This sensitivity is greater in the
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Table 2: Bias and MSE in Levels

Bias Mean-Squared Error

Horizon LRLP SVAR % Reduction LRLP SVAR % Reduction
0 0.161 0.302 46.8 2.24 2.61 14.3
1 0.151 0.284 46.8 2.23 2.59 13.7
2 0.141 0.264 46.5 2.20 2.53 13.1
3 0.133 0.248 46.1 2.23 2.55 12.4
4 0.125 0.230 45.6 2.19 2.48 11.9
5 0.119 0.205 41.7 2.22 2.32 4.23
6 0.110 0.185 40.3 2.21 2.21 0.00
7 0.102 0.164 37.8 2.26 2.08 –
8 0.096 0.144 33.0 2.34 1.96 –
9 0.093 0.127 26.9 2.44 1.86 –
10 0.087 0.112 22.2 2.51 1.77 –
15 0.059 0.056 – 3.11 1.48 –
20 0.030 0.024 – 4.07 1.34 –
25 0.001 0.006 73.7 6.09 1.29 –

Figure 4: Sensitivity to Choice of smax

(a) Labor in First Differences (b) Labor in Levels

levels specification than in the differences specification. In the latter, increasing smax results in a
mean estimated impulse response function that is quantitatively more similar to the true response.
The bias in the estimated LRLPs with smax = 100 is negligible at all but the longest forecast
horizons. In the differences specification, the estimated response changes relatively little with smax .
Taken together, this suggests that including 100 moving average terms is quantitatively sufficient in
the construction of B̂ to eliminate the bias from omitted moving average coefficients.

Mirroring the sensitivity of the proposed estimator to the choice of smax , the choice of included
lag length appears to be less of a concern for the levels specification than for the differences
specification. In fact, Figure 5c shows that the levels specification shows virtually no adjustment in
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Figure 5: Sensitivity to Choice of Lag Length

(a) Labor in Differences: LRLP Method (b) Labor in Differences: SVAR Method

(c) Labor in Levels: LRLP Method (d) Labor in Levels: SVAR Method

the mean estimated response. Figure 5a instead shows that the differences specification does show
improvements with the included lag length. Despite these sensitivities, however, it is notable that
the shape of the proposed estimator remains reflective of the true response regardless of the choice
of smax and included lag length. The shape of estimates from the SVAR on the other hand differ
not only with the measure of hours used, but also with the choice of included lag length in the case
of the differences specification.19

19Bias reductions from increasing smax and the included lag length are of course accompanied by reductions in
efficiency for both estimators.
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4.2 Removing Small Sample Bias

To investigate the relative performance of each method without contaminating the results with
small sample bias, I repeat the above exercise with 1,000 simulated time series of 10,000 quarters
in length. In these exercises, the LRLPs and SVARs suffer from downward bias AR coefficients
to a quantitatively insignificant degree. Figure 6a to Figure 6b mirror Figure 1a and Figure 1b
and show the results of the large sample exercise. I focus on the benchmark specifications as the
alternative specifications follow the same qualitative trends as in the previous section.

Figure 6: Comparison to True Response without Small Sample Bias

(a) Differences Specification (b) Levels Specification

The contemporaneous response of the LRLP method in differences and levels is 16 basis points
and 45 basis points, respectively. Relative to the estimated contemporaneous responses in the
small sample case, the former is shifted up by 3 basis points and the latter is shifted downwards
by 3 basis points. The non-uniformity of these shifts is consistent with Erceg et al. (2005), who
show that the way in which small sample bias of estimated AR coefficients translates to structural
parameters estimated using long-run restrictions is dependent on the estimated econometric model.
Said differently, downward biased AR coefficients do not necessarily translate into downward bias
structural parameters when applying long-run restrictions. The contemporaneous response of the
SVAR method is instead -36 basis points and 74 basis points, respectively.

Figure 7 displays only Eρ
(
ÎR, IR, h

)
as ρ

(
EÎR, IR, h

)
is quantitatively similar. Comparison of

Figure 7b and Figure 3b highlights one apparent advantage of the SVAR method. Because the bias
of the SVAR with labor in levels at long forecast horizons is small, its efficiency gains outweigh the
bias reductions of the LRLPs at long horizons in this specification. In practice, however, the true
bias of each estimator is unknown and the response of hours need not decay to 0 at long horizons.
Furthermore, LRLPs outperform the SVAR in terms of mean squared error at forecast horizons
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Figure 7: Integrated Mean Squared Error without Small Sample Bias

(a) Labor in Differences: Eρ
(
ÎR, IR, h̄

)
(b) Labor in Levels: Eρ

(
ÎR, IR, h̄

)
of most interest to business cycle researchers (i.e. several years following a shock), and in terms
of bias at all forecast horizons herein considered. Given these considerations, the superior bias
properties of the LRLP method should be preferred to the efficiency gains of SVARs.

4.3 Choosing smax

Up until now, I have remained silent on how to choose the free parameter, smax , used in the
construction of the contemporaneous correlation matrix. While it is possible to use a variety of
information criteria to choose the lag length for autoregressive econometric models, the same is not
true for the case of smax .20 Traditional information criteria choose a model parameter value, e.g.
the lag length, to minimize some function of the model likelihood function with a penalty term for
over-parameterization. Because these criteria depend on the likelihood function, they require the
ability to compare observation values to those predicted by the estimated econometric model. In
the case of choosing smax , this would require comparing the contemporaneous correlation matrix
implied by the estimated LRLP model to the "observed" contemporaneous correlation matrix. This
object, however, is unobservable and is itself the subject of the estimator herein proposed. Thus,
no comparison is feasible and standard information criteria are not applicable in this context.

Instead, recognize that increasing smax implies a bias variance tradeoff. Figure 6 shows that
the bias in the estimated contemporaneous correlation matrix decreases as smax rises. Increasing
the number of estimated parameter values used in Eq. 9, however, increases the uncertainty in
their sum and therefore the implied contemporaneous correlation matrix. To balance this tradeoff,

20Hacker and Hatemi-J (2008), Ozcicek and Mcmillin (1999), and Lütkepohl (1985) provide a review and compar-
isons of the selection criteria typically employed.
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practitioners can therefore estimate the contemporaneous correlation matrix for a range of smax

and choose the specification with the minimum smax such that the estimated contemporaneous
correlation matrix becomes both qualitatively and quantitatively similar to its behavior as smax

becomes large. Note that in large samples, an arbitrarily large smax should be chosen as the
bias-variance tradeoff is quantitatively negligible.

Figure 8 shows this procedure for the benchmark specification in the empirically relevant
sample size discussed above and used in Section 5. The first panel shows the mean behavior across
simulations for the contemporaneous response as a function of smax when labor is included in
differences. The second panel shows the same when labor is included in levels. When smax is low,
both specifications incorrectly suggest that hours decline on impact, a finding echoed by a large
strand of the literature. As smax increases, both specifications quickly estimate a contemporaneous
response that is qualitatively similar to the model implied response, i.e. that hours initially rise in
response to a positive productivity shock. In fact, the estimated response becomes positive after
increasing the maximum forecast horizon to only 10-15 quarters depending on whether hours are
included in levels or differences. In the differences specification, the contemporaneous response
plateaus at a maximum forecast horizon of roughly 25 quarters. In the levels specification, the
contemporaneous response also briefly plateaus at around 25 quarters and subsequently slowly
declines to become quantitatively indistinguishable from the model implied response. Figure 8
suggests that restricting smax to be between 20 and 30 quarters yields a good approximation to
the model implied contemporaneous response both qualitatively and quantitatively. Moreover,
a comparison of both specifications suggests that the true response–32 basis points–is between
approximately +20 and +40 basis points. In contrast, comparison of the SVAR specifications yields
a range of roughly -40 basis points to +60 basis points. Both of these facts serve to further highlight
the improvements of the proposed estimator over the traditional SVAR approach discussed in the
previous two subsections.

5 Estimating the Response of Aggregate Hours

Having established the advantages of the proposed estimator, I now revisit the large literature
estimating the response of aggregate hours to a productivity shock. As previously discussed, Galí
(1999), Christiano et al. (2003), Fernald (2007), Francis and Ramey (2005), Galí and Rabanal
(2005), Canova et al. (2010), and Saijo (2019) all present estimates from a structural VAR.21
Christiano et al. (2004), Basu et al. (2006), and Sims (2011) embed a constructed TFP series in
a VAR directly rather than identifying TFP shocks using the estimated VAR itself and come to

21Saijo (2019) also presents estimates using the local projections method using the TFP series constructed by Fernald
(2014).
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Figure 8: Contemporaneous Response vs. smax

(a) Labor in Differences (b) Labor in Levels

conflicting conclusions. With the exception of Christiano et al. (2003) and Christiano et al. (2004),
the overwhelming conclusion of these papers is that aggregate hours decline–at least on impact–in
response to an unanticipated rise in productivity.22 This contrasts with RBC models à la Kydland
and Prescott (1982), King and Rebelo (1999), and the extensions thereof, which predict a rise in
hours in response to a positive technology shock. The direct, and often explicit, implication of this
literature is therefore that this class of models is unreliable.23

Because much of the evidence to date has been obtained by imposing long-run restrictions
on estimated VARs, it is subject to the critiques previously discussed. I therefore, estimate the
response of aggregate hours to a productivity shock using the proposed estimator. I obtain output
per hour (labor productivity) and labor hours data for the non-farm private business sector spanning
the 1948Q1-2019Q2 period from the BLS. Labor hours are normalized by the non-institutionalized
civilian population aged 16 and over in any given quarter.24 Labor productivity is first differenced
in all empirical specifications. There has been significant debate in the literature as to whether
or not labor hours should enter in levels or in first differences with no clear consensus to date.
While Dickey-Fuller tests fail to reject the null hypothesis that log-labor hours have a unit root, I
do not take a stand on which approach is correct and instead present results when logged hours are
included in both levels and first differences. Time series of the logarithm of the raw data are shown
in Figure 9.

Furthermore, Fernald (2007) and Canova et al. (2010) show that controlling for low-frequency

22Sims (2011) finds that hours rise in response to temporary TFP shocks but fall in response to permanent TFP
shocks.

23See Kilian and Lütkepohl (2017) for a more detailed summary of the methodological components of this debate.
24The series ID of the BLS data used are PRS85006093, PRS85006033, and LNU00000000, respectively.
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Figure 9: BLS Data

(a) Log-Labor Productivity (b) Log-Labor Hours per Capita

changes in labor productivity growth has first order effects on estimated impulse response functions.
To control for such considerations, I test for potential differences in subsample means of labor
productivity growth in the following way. First, a Chow (1960) test is conducted on the original
data for each potential break date until the first break date is found. A second Chow test is then
performed on every possible break date after including the previous break dates as regressors. This
process is continued until no new break dates are found. Once all break dates have been found, I
de-mean labor productivity growth for each subsample (i.e. between break dates). Two break dates
were found using this approach: 1973Q1 and 1974Q3.25

For comparison, I estimate the response of hours using both the proposed estimator and an
SVAR. The lag-length of the local projections is chosen to match that in the SVAR using the Akaike
(1974) information criteria with a maximum possible lag length of 10. While some have argued
that the the Schwarz (1978) information criteria outperforms alternatives (See e.g. Hacker and
Hatemi-J, 2008; Lütkepohl, 1985), long-run restrictions are sensitive to lag-truncation bias. As
a result, the over parameterized specifications typically chosen by the Akaike (1974) information
criteria may be preferable when relying on long-run restrictions for identification. Both information
criteria yield the same result in this case. The imposed maximum possible lag length is not binding
for any specification.

I construct 90% bootstrapped confidence for the SVARs using the bias-corrected bootstrap
algorithm described in Kilian (1998). I use 1,000 replications to estimate the bias in the first step

25Using the partial sample Wald statistic test suggested in Andrews (1993) and Andrews (2003) does not yield a
statistically significant break date using the critical values therein presented, though 1972Q4 is close to significant for
some presented critical values and virtually identical to first break date implied by the iterative Chow (1960) procedure.
Imposing a break only in 1972Q4 does not qualitatively change my results.
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and 2,000 replications to estimate the confidence bands in the second step. An appropriate method
for bootstrapping local projections is less clear. While Jordà (2009) discusses the importance
of developing bootstrap methods for the local projections method, a blocks-of-blocks bootstrap
approach for each forecast horizon, s, described in Kilian and Kim (2011) is the only proposal to
date. Unlike this paper, their estimates of the contemporaneous correlation matrix are obtained
from a VAR. In addition, this block-of-blocks bootstrap does no adequately consider the correlation
between local projections coefficients across forecast horizons. Moreover, Kilian and Kim (2011)
show through Monte-Carlo simulation that their proposed bootstrap may yield less than nominal
coverage. This issue is more or less severe depending on the data generating process used to
generate the Monte-Carlo samples. In light of these shortcomings, I instead bootstrap the long-run
local projections by drawing from the asymptotic joint distribution of the reduced form coefficients
and applying the same bias correction method as for the bootstrapped SVARs.

Finally, as described in Section 2, I must specify a choice of smax to recover the structural
parameters and therefore the impulse response function. As discussed previously, the choice of
smax directly affects the number of moving average coefficients included in the construction of
the long-run impact of each shock. If smax is too small, I may be missing important dynamic
relationships of the data generating process. Thus, I follow the heuristic approach discussed in
Section 4.3 and estimate the contemporaneous correlationmatrix for awide range of smax . Figure 10
shows the estimated contemporaneous response for each specification.

Figure 10: Sensitivity of Results to smax

(a) Labor in Levels (b) Labor in Differences

Thefirst column of Figure 10 shows the contemporaneous responsewhen log-labor is included in
levels. The second column shows the estimated contemporaneous response when labor is included
in first differences. The overall relationship between smax and the estimated contemporaneous
response depicted above suggests that the contemporaneous response rises with smax . The non-
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smoothness of this relationship results from the fact that the AR coefficients of the local projections
method can be choppy relative to their VAR counterparts, a fact highlighted in Ramey (2016).
Despite these fluctuations, the tendency of the contemporaneous response to rise with smax is clear.
In the levels specification, a maximum forecast horizon of 30 is chosen. A larger smax is required
for the differences specification. In this case, I choose a maximum forecast horizon of 85, though
a less conservative choice of 65 provides quantitatively similar results.

Figure 11: Estimated Impulse Response of Hours to a Productivity Shock

(a) LRLP Method: Labor in Levels (b) LRLP Method: Labor in Differences

(c) SVAR Method: Labor in Levels (d) SVAR Method: Labor in Differences

Figure 11 shows the estimated impulse response of hours to a technology shock. The first
column shows results for the long-run local projections and SVAR in levels and the second column
shows the results for the these two estimators when log-labor hours is included in first differences.
The results from the proposed estimator in Figure 11a and Figure 11b show that labor hours rise on
impact in response to a positive technology shock and follow a hump-shaped response thereafter
regardless of whether labor hours are included in levels or first differenced. The striking feature of
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the proposed estimator is that, regardless of the chosen specification, the estimated response of hours
is qualitatively the same. The SVAR method on the other hand predicts two qualitatively different
responses depending on the specification used. The SVAR in levels, however, tightly matches both
the level LRLP and the differenced LRLP. These results echo the findings of Christiano et al. (2003)
that conclusions drawn from the SVAR with labor hours in levels should be preferred.

In all cases except for the SVAR in first differences, the bootstrapped confidence bands for
the contemporaneous response contain 0. Hence, I cannot reject the hypothesis that hours do not
respond, or even feature a very small negative response, to a positive productivity shock. Still there
is substantially more probability mass to the right of zero than to the left of zero. Figure 12 shows
the bootstrapped distribution of the contemporaneous response for the long-run local projections.
For the long-run local projections in levels, approximately 91.8% of the probability mass lies above
0. For the long-run local projections with hours included in first differences, approximately 90.6%
of the probability mass lies above 0. Taken together, the results of this section provide new evidence
that hours in fact rise in response to a technology shock and that the standard RBC model may in
fact be consistent with the data.

Figure 12: Bootstrapped Distribution of Contemporaneous Response

6 Conclusion

In this paper, I extend the local projections method to identify structural shocks through long-run
restrictions. I show that my proposed estimator yields significant reductions in bias relative to
SVARs both on impact and for most forecast horizons. Using Monte-Carlo evidence, I show that
the proposed estimator is less sensitive than standard SVARs identified with long-run restrictions to
the choice of included lag length and order of integration of the endogenous variables. Moreover,
using my proposed estimator, I provide evidence that, in contrast to much of the evidence based
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on SVARs, aggregate labor hours rise in response to positive productivity shocks and follow a
hump shaped profile thereafter. In fact, I show that over 90% of the bootstrapped probability mass
indicates that hours rise on impact in response to a positive productivity shock. This result provides
new empirical support for the standard real business cycle model.

I also highlight several previously unexplored issues of importance for future research. First, the
bias reductions of the proposed estimator are illustrated only in the context of long-run restrictions.
Structural identification in empirically relevant sample sizes using, for example, sign restrictions
may also be improved upon by relying on local projections rather than estimatedVARs. Additionally,
current methods of bootstrapping with time series data either perform poorly for local projections
or do not appropriately accommodate structural identification using local projections. Both of these
issues require additional research.
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