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Introduction

• Markov chains are one of the most useful stochastic
processes

• Simple and flexible
• Pervasive
• Low computation costs

• Many applications in economics and elsewhere

• Google PageRank
• Business cycle models (boom-bust cycles)
• Job Search Theory

Goal: Become familiar with foundations of Markov
processes and work through a simple application



Introduction

• Say X ∈ {1, 2, . . . ,N} is a set of states. Then the process
governing X (t) is Markovian iff

P(X (tn+1) = j |X (tn) = i ,X (tn−1) = in−1 . . . )

= P(X (tn+1) = i |X (tn) = i)

• A Markov process is time homogeneous iff

P(X (t) = j |X (s) = i) = P(X (t − s) = j |X (0) = i)

• Using time homogeneity, you can show several key
properties

• Holding times, Ti are distributed geometrically
• Potential states are constant over time
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Discrete Time



Discrete Time Processes

• Completely characterized by transition (Markov) matrix, P

• Transition matrix is an n × n matrix such that

• All elements are non-negative
• All rows sum to 1

P =

Boom Avg Bust( )0.3 0.6 0.1 Boom
0.3 0.5 0.2 Avg
0.1 0.3 0.6 Bust

• Gives probability of going from i → j

π′t+1 = π′tP



Discrete Time Processes

• Two central concepts to Markov chain theory are
periodicity and irreducibility

• Periodic if the chain cycles in a predictable way

LCD of D(x) ≡ {j ≥ |P j(x , x) > 0}

• Irreducible if all states communicate, i.e.

∃ k , j s.t. Pk(x , y) > 0 and P j(y , x) > 0 ∀ x , y



Discrete Time Process
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Discrete Time Processses
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Discrete Time Processes

• Typically interested in asymptotic (stationary) distribution
of processes

π′ = π′P

• Stationary distribution gives long-run proportion of time
in each state

• Getting to the asymptotic distribution where X ∈ {0, 1}:

Pr(Xt+2 = j |Xt = i) = P(Xt+2 = j |Xt+1 = 0)P(Xt+1 = 0|Xt = i)

+ P(Xt+2 = j |Xt+1 = 1)P(Xt+1 = 1|Xt = i)

= p0jp
(1)
i0 + p1jp

(1)
i1



Discrete Time Processes

• Thus,

p
(2)
00 = p00p00 + p10p01 p

(2)
01 = p01p00 + p11p01

p
(2)
10 = p00p10 + p11p11 p

(2)
11 = p01p10 + p11p11

• Notice,

PP =

[
p00p00 + p10p01 p01p00 + p11p01

p00p10 + p11p11 p01p10 + p11p11

]



Discrete Time Processes

• Iterating forward, we get the asymptotic distribution:(
lim
n→∞

Pn
)
ij

= πj

• Alternatively, find the eigenvector of P ′ corresponding to
an eigenvalue of 1

λv = Av ⇔ π = P ′π

• Lemma: If P is both irreducible and aperiodic,

1) P has a unique stationary distribution
2) For any initial distribution π0, lim

n→∞
‖π0P

n − π∗‖ → 0



Example
Recall the transition matrix of a model economy:

P =

Boom Avg Bust( )0.3 0.6 0.1 Boom
0.3 0.5 0.2 Avg
0.1 0.3 0.6 Bust

What is the long-run probability of the economy being in each
state of growth?

n 5 10 20

Pn

0.2447
0.4696
0.2858

0.2414
0.4656
0.2930

0.2414
0.4655
0.2931





Homework
Say that the transition matrix, P , is

P =

[
0.2 0.8
0.6 0.4

]
Use your favorite numerical tool to find the steady state
distribution using the following three methods and compare the
coputation time of each:

1) Iterate on π′t+1 = π′tP

2) The eigenvalue-eigenvector method

3) Iterate the transition matrix forward,
(

lim
n→∞

Pn
)
ij

= πj

Repeat for

P =


0.1 0.3 0.2 0.4
0.5 0.1 0.2 0.2
0.7 0.1 0.1 0.1
0.1 0.2 0.6 0.1





Continuous Time



Continuous Time Processes

• Must turn to continuous time for many phenomena

• Must rely on a differential equation rather than transition
matrix

• Using time homogeneity, you can show several key
properties (as before)

1) Holding time in each state, Ti , is exponentially
distributed

2) Potential states are constant over time
3) Probability of reaching a state in t units is constant



Continuous Time Processes

• Contiuous time processes characterized by transition rates
not probabilities

• Let qij be the transition rate from state i → j and
vi =

∑
k 6=i

qik . Then by prop. 1

Pr(Ti = t) = vie
−vi t Pr(Xn = j |Xn−1 = j , event) =

qij
vi

• Using a Taylor series expansion,

Pr(Ti > h) ≈ 1− vih + o(h) Pr(Ti ≤ h) ≈ vih + o(h)



Continuous Time Processes
• We can now characterize the probability of transitioning

from i → j

pij(t + h) = P(X (t + h) = j |X (0) = i)

=
∑
k∈S

P(X (t + h) = j |X (h) = k)P(X (h) = k |X (0) = i)

=
∑
k∈S

P(X (t) = j |X (0) = k)P(X (h) = k |X (0) = i)

=
∑
k∈S

pkj(t)P(X (h) = k |X (0) = i)

• Seperate out the k = i term,

pij(t + h) = pij(t)P(X (h) = i |X (0) = i)+∑
k 6=i

pkj(t)P(X (h) = k |X (0) = i)



Continuous Time Processes
• Now, we can use our approximate holding time probabilities

from before

pij(t + h) = pij(t) (1− vih + o(h))︸ ︷︷ ︸
No transition

+
∑
k 6=i

pkj(t) p̃ik(vih + o(h))︸ ︷︷ ︸
Transition from i → k

• Rearranging, substituting qik = vi p̃ik , and taking h→ 0

p′ij(t) =
∑
k 6=i

qikpkj(t)− vipij(t)

• Hence, we obtain a Kolmogorov differential equation

P ′(t) = QP(t) where Q =


−v1 q12 . . . q1s

q21 −v2 . . . q2s
...

...
. . .

...
qs1 qs2 . . . −vs





Continuous Time Processes

• Given P(0) = I , we have completely characterized the
process

P(t) = etQ ≡
∞∑
n=0

(tQ)n

n!

• Stationary distribution of CTMC given by π′ = π′P(t) ∀ t
• Can prove this is equivalent to π′Q = 0
• Known as global balance equation

• Above relationship becomes unmanageable fast

• Rely on the embedded jump chain given by holding times

• Markov chain given an event occurs
• Transforms problem to discrete chain



Continuous Time Processes

• Construct a transition matrix, P̃ , given an event occurs

• Implies P̃ij = p̃ij and p̃ii = 0
• Stationary distribution given by ψ′ = ψ′P̃

• Assume global balance equations satisfied; interpret ψj as
long run proportion of transitions into state j

ψj = Cπjvj πj =
1

C
· ψj

vj

• Sum of states must be equal to 1

⇒ ψj =
πjvj∑

i∈S
πivi

⇒ πj =
ψj/vj∑

i∈S
ψi/vi



Application



Application to Burdett-Mortensen

• Search assumes Poisson arrival rates

• Markovian
• Time homogeneous

• Unemp. and emp. job arrival rate of α0 and α1; wage offer
distribution F (x)

• Jobs destroyed at exogenous rate δ

• Discount at rate r

• Reservation wage given by

wR − b = [α0 − α1]

∞∫
wR

1− F (x)

r + δ + α1(1− F (x))
dF (x)



Application to Burdett-Mortensen

• Algorithm:

1) Construct generator matrix Q
2) Construct P̃ from Q
3) Guess ψ0; I typically set ψ0(1) = 1
4) Iterate ψi P̃ until convergence
5) Back-out π∗ using above relationships



Application to Burdett-Mortensen

• Note that the you need to use a discrete approximation to
Pr(wi):

Pr(w = wi) ≈ F (wi + ε)− F (wi − ε) where ε = 0.5∆w

• Generator matrix given by

Q =

u w1 w2 . . . w̄


−Σu α0Pr(w1) α0Pr(w2) . . . α0Pr(w̄) u
δ −Σ1 α1Pr(w2) . . . α1Pr(w̄) w1

δ 0 −Σ2 . . . α1Pr(w̄) w2
...

...
...

. . .
...

...
δ 0 0 0 −Σw̄ w̄



Application to Burdett-Mortensen
• I picked some numbers and used an exogenous log-normal

wage distribution



Homework

Use your favorite numerical tool to approxiamte the observed
wage distribution of a model of OTJ search with:

1) Arrival rates (α0, α1) = (5, 2)

2) Job destruction rate δ = 0.5

3) Normalize b = 0 and r = 0.03

4) Exogenous lognormal wage distribution with
(µ, σ) = (5, 0.05)
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